Preparation of Highly Dispersed Cu on TiO₂ Using Cu(II) Complexes

Koji Nagashima, Hisao Kokusen, Norieda Ueno, Ayako Matsuyoshi, Tomomi Kosaka, Miki Hasegawa,[†]

Toshihiko Hoshi,[†] Kohki Ebitani,^{††} Kiyotomi Kaneda,^{††} Hirofumi Aritani^{†††} and Sadao Hasegawa*

Department of Chemistry, Tokyo Gakugei University, Koganei, Tokyo 184-8501

[†]Department of Chemistry, College of Science and Engineering, Aoyama Gakuin University, Setagaya-ku, Tokyo 157-8572

^{††}Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531

^{†††}Faculty of Engineering and Design, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-0962

(Received November 24, 1999, CL-990996)

TiO₂-supported Cu samples were prepared by using several Cu precursors, and isolated Cu²⁺ ions and their behavior of thermal reduction were evaluated by means of ESR spectroscopy. Only 50% of Cu²⁺ were reduced to Cu⁺ or Cu⁰ by using cupric nitrate as a precursor. Highly dispersed Cu ions on TiO₂ could be obtained by using Cu²⁺ complexes (Cu(acac)₂ and Cu(dbm)₃) as a precursor.

TiO₂-supported Cu shows a catalytic activity for methanolreforming,¹ NO and N₂O decomposition,²⁻⁵ combustion of soot particles,⁶ etc. For these reaction systems, it is summarized that reduced Cu ions, e.g., Cu⁺ and Cu⁰, act as the active center, and the support-interaction between Cu and TiO₂ is very effective for stabilizing reduced Cu species. However, formation of highly dispersed Cu species on the support-oxide is difficult because Cu ions tend to aggregate to form Cu-cluster species by means of general preparation method. In the case of Cu ionexchanged zeolites such as Cu-ZSM-5 and Cu-Y, Cu ions can be stabilized in the channel of frameworks dispersively, and well-dispersed Cu ions can be obtained.⁸⁻¹⁰ These Cu ions show a high catalytic activity for deNO_v reactions because Cu ions can easily be reduced thermally.¹¹ In the case of cupric nitrate precursor, almost Cu²⁺ ion could not be reduced, because Cu²⁺ cluster was formed. Since strong cationexchange site does not exist on the oxide supports used widely (such as TiO₂, ZrO₂, ZnO, SiO₂, etc.), the preparation of highly dispersed Cu ions on the support is necessary to obtain a novel catalyst exhibiting high redox activity.

In this study, we attempted to prepare highly dispersed Cu ions on TiO₂ support. It is reported that highly dispersed NbOx species are formed on TiO₂ by using Nb⁵⁺ complex (Nb(dbm)₄⁺-Cl⁻, Hdbm : 1,3-diphenyl-1,3-propanedione).¹² By use of Cu²⁺ complex with bulky ligands, dispersion of Cu ions can be expected. We employed two Cu²⁺ complexes in preparing Cu/TiO₂ to form isolated Cu²⁺species on TiO₂. The state of Cu ions and their behavior of thermal reduction were appreciated by means of ESR spectroscopy.

The Cu/TiO₂ samples were prepared by impregnation of ultra-fine TiO₂ particle (IT-S; Idemitsu Kosan Co., Ltd.) support which calcined at 600 °C for 6h with an aqueous solution of Cu(NO₃)₂·3H₂O or methyl chloride solution of Cu²⁺ complexes. The synthesized complexes used in this study are bis-(acetylacetonato)-copper(II) (Cu(acac)₂) and bis-(1,3-diphenyl-1,3-propanedionato)-copper(II) (Cu(dbm)₂). The Cu-loading is 0.1 wt% in all the samples. The impregnated samples were then dried at 120 °C for overnight and calcined at 600 °C for 3 h. In this paper, the samples prepared from Cu(NO₃)₂·3H₂O,

Cu(acac)₂, and Cu(dbm)₂ were designated as Cu(N)/TiO₂, Cu(A)/TiO₂, and Cu(D)/TiO₂, respectively. All the samples consisted of anatase type TiO₂, because of calcined at 600 °C. Each sample (0.05 g) was set to the *in situ* quartz cell and evacuated at given temperature between 100 and 500 °C for 1 h prior to ESR measurement. ESR spectra (X-band) were recorded with JEOL JES-ME3X spectrometer at room temperature. The *g*-values and the signal intensity were evaluated by use of Mn²⁺-marker as an internal standard and CuSO₄·5H₂O as a reference of Cu²⁺ sample. The surface areas of samples were increased with evacuated temperature from 45 to 60 m²/g.

For all Cu/TiO₂ samples after evacuation, ESR signal of Cu^{2+} can be seen definitely at g=2.040 as a center. This Cu^{2+} signal exhibits different intensity between the samples prepared. The relation between the evacuation temperature and signal intensity in Cu(N)/TiO₂, Cu(A)/TiO₂, and Cu(D)/TiO₂ is shown in Figure 1. In the case of low evacuation temperature

Figure 1. Relation between the intensity of Cu^{2+} ESR-signal and evacuated temperature (equimolecular CuSO₄ · 5H₂O as a reference of Cu²⁺).

at 100–300 °C, the intensity of Cu²⁺ signal in Cu(N)/TiO₂ is lower than those in Cu(A) and Cu(D)/TiO₂. It can be explained that the loss of the signal intensity is due to the dipole-dipole interaction of Cu²⁺ clusters.⁸ Thus, the Cu ions in Cu(N)/TiO₂ contain aggregated Cu²⁺ cluster species. It supports the several works that Cu ions on TiO₂ tend to aggregate by use of cupric nitrate as a precursor.^{1,13,14} For Cu(A)/TiO₂ and Cu(D)/TiO₂, about 83% of Cu²⁺ is ESR-visible even after evacuation at 100

Chemistry Letters 2000

 $^{\circ}$ C. In these samples, more than 90% of Cu²⁺ can be seen after evacuation at room temperature. These results show that welldispersed Cu2+ ions on TiO2 are obtained by use of Cu2+-complexes as a precursor. With an increase of evacuated temperature, Cu²⁺ signal is reduced in all the samples. Since these samples were calcined sufficiently at 600 °C before evacuation, aggregation of Cu ions during the evacuation is not reasonable. The disappearance of the signal is assigned to the thermal reduction of Cu²⁺ ions to form Cu⁺.¹⁵ In the case of Cu(N)/TiO₂, low evacuation temperature up to 300 °C, the slope of signal reduction is almost as similar as those in $Cu(A)/TiO_2$ and $Cu(D)/TiO_2$. However, it is remarkable that the slope becomes low above 300 °C. It is inferred that isolated Cu²⁺ in Cu(N)/TiO₂ is reduced below 300 °C, and most of thermally reducible Cu²⁺ ions are occupied by the ESR-inactive cluster species above 300 °C. It is reported that aggregated Cu²⁺ cluster can hardly be reduced to Cu⁺ below 500 °C,¹⁴ and thus, reduction of Cu^{2+} in $Cu(N)/TiO_2$ may scarcely proceed at 300-500 °C. On the other hand, the signal intensity in Cu(A)/TiO2 and Cu(D)/TiO2 decreased monotonously with increasing of evacuation temperature up to 500 °C. It has been accepted that isolated Cu²⁺ can easily be reduced thermally for Cu/SiO₂ and Cu ion-exchanged zeolites.^{9,16,17} It is appropriate

Scheme 1. Formation of surface structure of Cu(A) or $Cu(D)/TiO_2$ catalyst.

that Cu^{2+} ions in $Cu(A)/TiO_2$ and $Cu(D)/TiO_2$ also be reduced thermally because of isolation of Cu ions. The difference of the slope between $Cu(A)/TiO_2$ and $Cu(D)/TiO_2$ is still unclear, however, it is likely that the molecular size of $Cu(dbm)_2$ is too large to exceed the full coverage of TiO₂ surface slightly.

As described above, highly dispersed Cu ions on TiO₂ can be prepared by use of Cu²⁺ complexes as a precursor than that of Cu²⁺ nitrite. The isolated Cu²⁺ ions can be reduced thermally up to 500 °C.

This work was funded by the Sasakawa Scientific Research Grant from The Japan Science Society. Thanks are given to Prof. Seitaro Namba of Department of Materials, Teikyo University of Science & Technology for obtaining the BET data.

References

- 1 H. Kobayashi, N. Takezawa, and C. Minochi, *J. Catal.*, **69**, 487 (1981).
- 2 F. Boccuzzi, E. Guglielminotti, G. Martra, and G. Cerrato, *J. Catal.*, **146**, 449 (1994).
- 3 H. Aritani, N. Akasaka, T. Tanaka, T. Funabiki, S. Yoshida, H. Gotoh, and Y. Okamoto, *J. Phys. Soc. Faraday Trans.*, 92, 2625 (1996).
- 4 H. Aritani, T.Tanaka, T. Funabiki, S. Yoshida, H. Gotoh, and Y. Okamoto, *J. Catal.*, **168**, 412 (1997).
- 5 T. Miyadera, Appl. Catal. B, 16, 155 (1998).
- 6 F. Figuras, B. Coq, G. Mabilion, M. Prigent, and D. Tachon, *Stud. Surg. Sci. Catal.*, **101**, 621 (1996).
- 7 S. Yuan, P. Meriaudeau, and V. Perrichon, *Appl. Catal. B*, **3**, 319 (1994).
- 8 R. A. Schoonheydt, Catal. Rev. -Sci. Eng., 35, 129 (1993).
- 9 P. A. Jacobs, W. de Wilde, R. A. Schoonhydt, and J. V. Uytterhoeven, J. Chem. Soc. Faraday Trans. 1, 72, 1221 (1976).
- 10 C. Chung and J. H. Lusford, J. Chem. Phys., 57, 2890 (1972).
- 11 S. Tanabe and H. Matsumoto, Appl. Catal. 45, 27 (1988).
- H. Kokusen, S. Matsuhara, Y. Nishino, S. Hasegawa and K. Kubono *Catal. Today*, 28, 191 (1996).
- 13 F. Boccuzzi, A. Chiorino, G. Martra, M. Gargano, N. Ravasio, and B. Carrozzini, J. Catal., 165, 129 (1997).
- 14 M. del Arco, A. Caballero, P. Malet, and V. Rives, *J. Catal.*, **113**, 120 (1988).
- 15 J. Terxter, D. H. Stome, R. G. Herman, and K. Killer, J. Phys. Chem., 81, 333 (1977).
- 16 M. Anpo, T. Nomura, T. Kitao, E. Giamello, M. Che, and M. A. Fox, *Chem. Lett.*, **1991**, 889.
- 17 N. Negishi, M. Matsuoka, H. Yamashita, and M. Anpo, J. *Phys. Chem.*, **97**, 5211 (1993).